
Topic 2: Unix
Practical Research Computing

Dr. Christopher S. Simmons

simmons@utdallas.edu

https://utd.link/prc

mailto:simmons@utdallas.edu
https://utd.link/prc

Unix Background

• A: Almost 50!
• Unix originally dates back to 1969 with

a group at Bell Laboratories

• The original Unix operating system was
written in assembler

• In 1973 Thompson and Ritchie finally
succeeded in rewriting Unix in their
new language, C.

• Most system programming was done in
assembler

• The very concept of a portable
operating system was unheard of

• First Unix installations in 1972 had 3
users and a 500KB disk

• Q: How old is Unix?

DEC PDP-11, 1972

What is UNIX?
• UNIX is a multiuser, preemptive, multitasking operating system which provides several

facilities:
– management of hardware resources

– directories and file systems

– loading / execution / suspension of programs

• What does UNIX stand for?
– Nothing actually - It is a "play on words" of an older multiuser time-sharing OS known as

Multics

• There are (were) many flavors of UNIX:
– Solaris (Sun/Oracle)

– AIX (IBM)

– Tru64 (Compaq)

– IRIX (SGI)

– SysV (from AT&T)

– BSD (from Berkeley)

– Linux (its not UNIX, but it’s close enough from our point of view)

What is Linux?
• Linux is a clone of the Unix operating system written from scratch by Linus Torvalds with

assistance from developers around the globe

• Technically speaking, Linux is not UNIX

• Torvalds uploaded the first version of Linux in September 1991

• Only about 2% of the current Linux kernel is written by Torvalds himself

• He remains the ultimate authority on what new code is incorporated into the kernel

• Developed under the GNU General Public License , the source code for Linux is freely available

• Download latest kernels from www.kernel.org

• A large number of Linux-based distributions exist (for free or purchase):

– RedHat, Fedora, CentOS
– SUSE
– Debian
– Gentoo

– Slackware
– Ubuntu
– Arch
– Mint

http://www.linux.org/info/gnu.html
http://www.kernel.org/

Why use UNIX?

• Performance: as we’ve seen, supercomputers generally
run UNIX; rich-multiuser environment

• Functionality: a number of community driven scientific
applications and libraries are developed under UNIX
(molecular dynamics, linear algebra, fast-fourier
transforms, etc).

• Flexibility/Portability: UNIX lets you build your own
applications and there is a wide array of support tools
(compilers, scientific libraries, debuggers, network
monitoring, etc.)

Some Key People

Ken Thompson and Dennis Ritchie
Your new heroes.

????
Linus Torvalds

Unix Background: Chronology

Source: The Open Group, www.unix.org

The Single UNIX Specification is the collective name of a family of standards for computer operating systems to
qualify for the name "Unix“ (eg. HP-UX, IBM AIX, SGI IRIX, Sun Solaris).

How does UNIX work?

• UNIX has a kernel and one or
more shells

• The kernel is the core of the
OS

• It receives tasks from the
shell and performs them

• Users interact with the shell

How does UNIX work?

• Everything in UNIX is either a file or a
process

• A process …
• is an executing program identified by a

unique PID (process identifier).

• may be short in duration or run indefinitely

• A file is …
• a collection of data.

• created by users using text editors, running
compilers, etc

• The UNIX kernel is responsible for organizing
processes and interacting with files

• it allocates time and memory to each processes

• handles the filesystem and communications in response to system calls

What does the Shell Do?

• The UNIX user interface is called the shell

• The shell tends to do 4 jobs repeatedly:

display
prompt

execute
command

process
command

read
command the shell

An Example

Example: A user wants to remove a file:

• User has a command-line prompt (the shell
is waiting for instructions)

• User types the command (rm myfile) in the
shell

• The shell searches the filesystem for the file
containing the program (rm)

• A new process is forked from the shell to run
the command with an instruction to remove
myfile

• The process requests that the kernel,
through system calls, delete the reference to
myfile in the filesystem

• When the rm process is complete, the shell
then returns to the UNIX prompt indicating
that it is waiting for further commands

• The process ID (PID) originally assigned to
the rm command is no longer active

Unix Interaction

• The user interacts with UNIX via a shell

• The shell can be graphical (X-Windows) or text-based (command-line)
shells like tcsh and bash

• To remotely access a shell session, use ssh (secure shell)

• ssh is a secure replacement for telnet

X-Windows and Unix
• X-Windows is the

standard graphical
layer for UNIX systems

• Most graphical interfaces
for UNIX are actually built
on top of X-Windows

• Fundamental
command-line
application in
X-windows is an
xterm

• A user can have many different invocations of xterm running at once on the same
display, each of which provides independent input/output for the process running in it
(normally the process is a Unix shell)

X-Windows
• The original idea of X emerged at MIT in

1984

• It provides a standard toolkit and protocol
to build graphical user interfaces (GUI) on
Unix, or Unix-like operating systems

• X supports remote connectivity

• The computer where application programs
(the client applications) run can differ from
the user's local machine (the display
server).

• X's usage of the terms "client" and "server"
reverses what people often expect, in that
"server" refers to the user's local display
("display server") rather than to a remote
machine.

X-Windows and Unix

• Several nice desktop environments exist for
Linux
• KDE

• Gnome

• Cygwin for Windows also includes an Xserver
and xterm client

• X.Org is a freely redistributable open-source
implementation of the X Window System
(http://www.x.org/)

• Many distros are replacing X.Org with
Wayland

http://www.x.org/

Unix Accounts

• To access a Unix system, you need to have an account

• Unix account includes:
• username and password
• userid and groupid
• home directory

• a place to keep all your snazzy files
• may have a quota (system-imposed limit on how much data you can have)

• a default shell preference

Unix Accounts

• A username is a sequence of alphanumeric characters
• eg. csim or karl

• The username is the primary identifying attribute of your account

• the name of your home directory is usually related to your username:
• eg, /home1/00416/csim

Unix Accounts

• A password is a secret string that only the user knows

• Not even the system knows a user’s password

• When you enter your password, the system encrypts it and compares to a stored
string

• It's a good idea to include numbers and/or special characters (don't use an
english word, as this is easy to crack)

Unix Accounts

• A userid is a number (an integer) that identifies a Unix
account.

• Each userid must be unique

• In Unix-speak, userids are known as UIDs

• Why does Unix implement UIDs? It's easier (and more
efficient) for the system to use a number than a string like
the username

• You don't necessarily need to know your userid

Unix Accounts

• Unix includes the notion of a "group" of users

• A Unix group can share files and active processes

• Each account is assigned a "primary" group

• The groupid is a number that corresponds to this primary group

• In Unix-speak, groupids are knows as GIDs

• A single account can belong to many groups (but has only one primary group)

Files and File Names

• A file is a basic unit of storage (usually on a disk)

• Every file has a name

• Unix file names can contain any characters

• Some characters make it hard to access the file

• Unix file names can be long!
• how long depends on your specific flavor of Unix/file system

File Contents
• Each file can hold some raw data

• Unix does not impose any structure on files
– files can hold any sequence of bytes
– it is up to the application or user to interpret the files correctly

• Many programs interpret the contents of a file as having some special
structure
– text file, sequence of integers, database records, etc.
– in scientific computing, we often use binary files for efficiency in storage

and data access
• Fortran unformatted files

• Scientific data formats such as NetCDF or HDF5 have specific formats and
provide APIs for reading and writing

• Portability is an issue with some formats (little endian vs. big endian)

Directories

• A directory is a special kind of file

• Unix uses a directory to hold information about other files

• We often think of a directory as a container that holds other files (or
directories)

• Mac and Windows users can relate a directory to the same idea as a
folder

More about File Names
• Every file must have a name

• Each file in the same directory must have a
unique name

• Files that are in different directories can have
the same name

• Note: Unix is case-sensitive
• So, “texas-fight” is different from “Texas-Fight”
• caveat: the default mac file-system is dodgy

Unix Filesystem

• The filesystem is a hierarchical system of organizing files and directories

• The top level in the hierarchy is called the "root" and holds all files and directories.

• The name of the root directory is / (the “slash” directory)

• Typical system directories below the root directory include:
/bin contains many of the programs which will be executed by users

/etc files used by system administrators

/dev hardware peripheral devices

/proc a pseudo file system which tracks running processes and system state

/lib system libraries

/usr normally contains applications software

/home home directories for different systems

Unix Filesystem (an upside-down tree)

/

bin etc h1 tmp usr

csim karl bin etc

public_html local public ls who

Pathnames

• The full pathname of a file includes the file name and the name of the directory
that holds the file, and the name of the directory that holds the directory that
holds the file, and the name of the …
….all the way up up to the root directory

• The full pathname of every file in a Unix filesystem is unique (falls from the
requirement that every file in the same directory must be a unique name)

Pathnames (cont.)

• To create a pathname, you start at the root (so you start with "/"),
then follow the path down the hierarchy (including each directory
name) terminating with the filename

• In between every directory name you put a "/"

Pathname Examples
/

bin etc h1 tmp usr

csim karl bin etc

public_html local public ls who

/usr/bin/ls
lecture1.pdf

/h1/csim/public_html/lecture1.pdf

Absolute Pathnames

• The pathnames described in the previous slides start at the root

• These pathnames are absolute pathnames

• We can also talk about the pathname of a file relative to a directory

Relative Pathnames
• A relative pathname specifies a file

in relation to the current working
directory (CWD)

• If CWD=/home, then the relative
pathname to charles is: charles

• If CWD=/home, then the relative
pathname to pigpen is: charles/pigpen

• If CWD=/home, then the relative
pathname to baseball
is: charles/franklin/baseball

• Most Unix commands deal with pathnames

• We often use relative pathnames when specifying files (for convenience)

Special Directory Names
• There is a special relative pathname for the current working directory (CWD):

. (yes, that’s a dot)

Example: ./foo (refers to “foo” in the current directory)

• There is also a special relative pathname for the parent directory:

.. (affectionately known as a dot-dot)

Example: ../foo (refers to “foo” in the parent directory)

• There is a special symbol for the location of your home directory:

~ (that’s a tilde)

Example: ~csim (refers to the home directory for user “csim”)

Disk vs. Filesystem
• Note that the file system hierarchy can actually be served by one or more

physical disk drives

• In addition, some directories may be provided from other computers (e.g. NFS)

/

bin etc h1 h2 opt

csim karl

Basic Commands

• Some basic commands for interacting with the Unix file system
are:
• ls - pwd - touch

• cd - cp - mkdir

• df - awk - rmdir

• cat - rm - find

• more - chmod - grep

• head - tail - chown/chgrp

• We will focus on ls first

The ls command

• The ls command displays the names of files

• If you give it the name of a directory as a command line parameter it
will list all the files in the named directory

Example ls Commands

ls list files in current directory

ls / list files in the root directory

ls . list files in the current directory

ls ..list files in the parent directory

ls /usr list files in the directory /usr

Command Line Options

• We can modify the output format of the ls program
with a command line option.

• The ls command supports a bunch of options:
– l long format (include file times, owner and permissions)

– a all (shows hidden files as well as regular files)

– F include special char to indicate file types

In Unix, hidden files have names that start with "."

ls Command Line Options

• To use a command line option precede the option letter with a minus:

ls -a or ls -l

• You can use two or more options at the same time like this:

ls -al

General ls command line

• The general form for the ls command is:

ls [options] [names]

• The options must come first!

• You can mix any options with any names.

• An example:

ls -al /usr/bin

Command Line Syntax

• ls [options] [names]
– The brackets around options and names in the general form of the ls

command means that something is optional

– This type of description is common in the documentation for Unix commands

– Some commands have required parameters

Variable Argument Lists

• You can give the ls command many files or directory names to display:

ls /usr /etc

ls -l /usr/bin /tmp /etc

Where to Get More Information?
• Almost all UNIX systems have extensive on-line documentation known as man

pages (short for "manual pages").

• The Unix command used to display them is man. Each page is a self-contained
document.

• So, to learn more about the ls command, refer to its man page:
• man ls

• Man pages are generally split into 8 numbered sections (on BSD Unix and Linux):
• 1 General commands
• 2 System calls
• 3 C library functions
• 4 Special files (usually devices, those found in /dev)
• 5 File formats and conventions
• 6 Games
• 7 Miscellaneous
• 8 System administration commands and daemons

• You can request pages from specific sections:
• man 3 printf (shows manpage for C library function)

Example Man Page

Unix: A Culture in Itself

"Two of the most famous products of Berkeley

are LSD and Unix. I don't think that this is a coincidence."

(Anonymous quote from The UNIX-HATERS Handbook.)

Interacting with the Shell

Running a Unix Program

• Typically, you type in the name of a program and some command line
options

• The shell reads this line, finds the program and runs it, feeding it the
options you specified

• The shell establishes 3 separate I/O streams:
• Standard Input

• Standard Output

• Standard Error

Programs and Standard I/O

Program
Standard Input

(STDIN)

Standard Output

(STDOUT)

Standard Error

(STDERR)

Note: File descriptors are

associated with each

stream

0=STDIN

1=STDOUT

2=STDERR

Unix Pipes

• A pipe is a holder for a stream of data

• A Unix pipeline is a set of processes chained by their
standard streams, so that the output of each process
(stdout) feeds directly as input (stdin) of the next one

• This is handy for using multiple unix commands together to
perform a task

prog1 prog2
STDOUT STDIN

http://en.wikipedia.org/wiki/Stdout
http://en.wikipedia.org/wiki/Stdin

Building Commands

• More complicated commands can be built up by using one or more pipes

• Use the “|” character to pipe two commands together

• The shell takes care of all the hard work for you

• Example:

> cat apple.txt
core
worm seed
jewel

> cat apple.txt | wc
3 4 21

Note: the wc command prints

the number of newlines, words,

and bytes in a file

File Attributes

• Every file has a specific list of attributes:
• Access Times:

• when the file was created

• when the file was last changed

• when the file was last read

• Size

• Owners
• user (remember UID)

• group (remember GID)

• Permissions

File Time Attributes

• Time Attributes:
• ls -l shows when the file was last changed

• ls -lc shows when the file was created

• ls -lu shows when the file was last accessed

• Special names exist for these date-related attributes:
• mtime (last modification time)

• ctime (last change time, ie. when changes were made to the file or directory's inode: owner,
permissions, etc.

• atime (last access time)

• Display with ‘stat’ command

File Permissions

• Each file has a set of permissions that control who can
access the file

• There are three different types of permissions:
• read abbreviated r

• write abbreviated w

• execute abbreviated x

• In Unix, there are permission levels associated with three
types of people that might access a file:
• owner (you)

• group (a group of other users that you set up)

• world (anyone else browsing around on the file system)

File Permissions Display Format

-rwxrwxrwx
Owner Group Others

The first entry specifies the type of file:

“-” is a plain file

“d” is a directory

“c” is a character device

“b” is a block device

“l” is a symbolic link

What is this rwx Craziness?

• Meaning for Files:
r - allowed to read
w - allowed to write
x - allowed to execute

• Meaning for Directories:
r - allowed to see the names of the files
w - allowed to add and remove files
x - allowed to enter the directory

Changing File Permissions

• The chmod command changes the permissions associated with a file or directory

• Basic syntax is: chmod mode file

• The mode can be specified in two ways:
• symbolic representation

• octal number

• Both methods achieve the same result (user’s choice)

• Multiple symbolic operations can be given, separated by commas

chmod: Symbolic Representation

• Symbolic Mode representation has the
following form:

[ugoa][+-=][rwxX…]

u=user + add permission r=read
g=group - remove permission w=write
o=other = set permission x=execute
a = all X= see below

• The X permission option is very handy - it sets to execute only if the file is
a directory or already has execute permission (you really want to
remember this one when using recursively)

chmod Symbolic Mode Examples

> ls -al foo

-rw------- 1 karl support ...

> chmod g=rw foo

> ls -al foo

-rw-rw---- 1 karl support ...

> chmod u-w,g+x,o=x foo

> ls -al foo

-r--rwx--x 1 karl support ...

chmod: Octal Representation
• Octal Mode uses a single argument string which describes the

permissions for a file (3 digits)

• Each digit of this number
is a code for each of the
three permission levels
(user,group,world)

• Permissions are set
according to the following
numbers:
• Read = 4
• Write = 2
• Execute = 1

• Sum the individual permissions to get the desired combination

0 = no permissions whatsoever;

1 = execute only

2 = write only

3 = write and execute (1+2)

4 = read only

5 = read and execute (4+1)

6 = read and write (4+2)

7 = read and write and execute (4+2+1)

chmod Octal Mode Examples

> ls -al foo

-rw------- 1 karl support ...

> chmod 660 foo

> ls -al foo

-rw-rw---- 1 karl support ...

> chmod 417 foo

> ls -al foo

-r----xrwx 1 karl support ...

Basic Commands

• Some basic commands for interacting with the
Unix file system are:
• ls - pwd - touch

• cd - cp - mkdir

• df - awk - rmdir

• cat - rm - find

• more (less) - chmod - grep

• head - tail - chown/chgrp

• Let’s cruise through some interactive examples....

UNIX Commands: find

• At its simplest, find searches the filesystem for files whose name matches a
specific pattern

• However, it can do a lot more and is one of the most useful commands in Unix (as
it can find specific files and then perform operations on them)

• Here is a simple example:

> ls
dir1 foo foo2

> find . -name foo -print
./foo

UNIX Commands: find

• Find can also scan for certain file types. Here are some simple examples:

> find . -type d –print (find directories)
> find . –type f –print (find files)

• Particularly powerful commands can be built using the exec option to issue
commands on found files

> find . -type f -exec wc -l {} \;

• What will the above do?
(Counts the # of lines in each file)

UNIX Commands: grep

/export/home/rob> cat sequence.fas
>c01_009 499 amino acids MW=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DYSNASRTMLFNINKLEWDREILELLKIPESILPEVRPSSDIYGYTEVLGSSIPISGDAG
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN
AWKEAVKRSLGWEKSLGSK*

/export/home/rob> grep AA sequence.fas
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI

grep extracts lines from a file that match a given string or pattern

grep can also use a regular expression for

the pattern to search

Regular Expressions

• In addition to grep, a number of Unix commands support the use of regular
expressions to describe patterns:
• sed
• awk
• perl

• General search pattern characters:
• Any character (except a metacharacter) matches itself
• “.” matches any character except a newline
• “*” matches zero or more occurrences of the single preceding character
• “+” matches one or more of the proceeding character
• “?” matches zero or one of the proceeding character

• Additional special characters:
• “()” parentheses are used to quantify a sequence of characters
• “|” works as an OR operator
• “{}” braces are used to indicate ranges in the number of occurrences

Regular Expressions

• If you really want to match a period '.', you need to escape it with a
backslash "\."

Regexp Matches Does not match

a.b axb abc

a\.b a.b axb

Regular Expressions

• A character class, also called a character set can be used to match only one out of several
characters

• To use, simply place the characters you want to match between square brackets []

• You can use a hyphen inside a character class to specify a range of characters

• Placing a caret (^) after the opening square bracket will negate the character class. The result is
that the character class will match any character that is not in the character class

• Examples:
[abc] matches a single a b or c

[0-9] matches a single digit between 0 and 9

[^A-Za-z] matches a single character as long as it is not a letter

Regular Expressions

• Since certain character classes are used often, a series of
shorthand character classes are available for convenience:

\d a digit. eg [0-9]
\D a non-digit, eg. [^0-9]
\w a word character (matches letters and digits)
\W a non-word character
\s a whitespace character
\S a non-whitespace character

Regular Expressions

• More shorthand classes are available for matching boundaries:

^ the beginning of a line
$ the end of a line
\b a word boundary
\B a non-word boundary

Regular Expressions Examples
• “notice” a string that has the text "notice" in it

• “F.” matches an “F” followed by any character

• “a.b” matches “a” followed by any 1 char followed by “b”

• “^The” matches any string that starts with "The"

• “oh boy$” matches a string that ends in the substring "oh boy";

• “^abc$” matches a string that starts and ends with "abc" -- that could only
be "abc" itself!

• “ab*” matches an “a” followed by zero or more “b”'s ("a", "ab", "abbb",
etc.)

• “ab+” similar to previous, but there's at least one “b” ("ab", "abbb", etc.)

• “(b|cd)ef” matches a string that has either "bef" or "cdef"

• “a(bc)*”

• “ab{3,5}”

• “[Dd][Aa][Vv][Ee]”

matches an “a” followed by zero or more copies of the sequence "bc"
matches an “a” followed by three to five “b”'s ("abbb", "abbbb",
or "abbbbb")

matches "Dave" or "dave" or "dAVE“, does
not match "ave" or "da"

/export/home/rob> cat sequence.fas
>c01_009 499 amino acids MW=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DYSNASRTMLFNINKLEWDREILELLKIPESILPEVRPSSDIYGYTEVLGSSIPISGDAG
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN
AWKEAVKRSLGWEKSLGSK*

/export/home/rob> grep '[ST].[RK]' sequence.fas
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD

UNIX Commands: grep
grep extracts lines from a file that match a given string or pattern

a regular expression search

regex: another unix culture

http://xkcd.com/208/

Shell Customization

• Each shell supports some customization.
• user prompt settings

• environment variable settings

• aliases

• The customization takes place in startup files which are read by the
shell when it starts up
• Global files are read first - these are provided by the system administrators

(eg. /etc/profile)

• Local files are then read in the user’s HOME directory to allow for additional
customization

Shell Startup Files

sh,ksh:

~/.profile

bash:
~/.bash_profile
~/.bash_login

~/.profile

~/.bashrc

~/.bash_logout

tcsh:

~/.tshrc

~/.cshrc

~/.login

~/.logout

Programs and Standard I/O

Program
Standard Input

(STDIN)

Standard Output

(STDOUT)

Standard Error

(STDERR)

Note: File descriptors are

associated with each

stream

0=STDIN

1=STDOUT

2=STDERR

Defaults for I/O

• When a shell runs a program for you:
• standard input is your keyboard

• standard output is your screen or window

• standard error is your screen or window

• If standard input is your keyboard, you can type stuff in that goes to a program

• To end the input you press Ctrl-D (^D) on a line by itself, this ends the input
stream

• The shell is a program that reads from standard input

• Any idea what happens when you give the shell ^D?

Shell Stream Redirection

• A very powerful function in Unix is redirection for input and output:
• The shell can attach things other than your keyboard to standard input (stdin)

• A file (the contents of the file are fed to a program as if you typed it) - common in scientific
programming

• A pipe (the output of another program is fed as input as if you typed it)

• The shell can attach things other than your screen to standard output (stderr)
• A file (the output of a program is stored in file)

• A pipe (the output of a program is fed as input to another program

Stream Redirection

• To tell the shell to store the output of your program in a file, follow
the command line for the program with the “>” character followed by
the filename:

ls > lsout

• The command above will create a file named lsout and place the
output of the ls command in the file

Stream Redirection

• To have the shell get standard input from a file, use the “<“ character:

sort < nums

• The command above would sort the lines in the file nums and send the result
to stdout

• The beauty of redirection is that you can do both forms together:

sort < nums > sortednums

Modes of Output Redirection

• There are two modes of output redirections:
• “>” the create mode

• “>>” the append mode

• For example:
• the command ls > foo will create a new file named

foo (deleting any existing file named foo).

• if you use “>>” instead, the output will be appended to
foo:

ls /etc >> foo

ls /usr >> foo

Stream Redirection

• Many commands send error messages to standard error (stderr) which is
different from stdout.

• However, the “>” output redirection only applies to stdout (not stderr)

• To redirect stderr to a file you need to specify the request direclty (note
that this syntax is shell dependent):
• BASH

• “2>” redirects stderr (eg. ls foo blah gork 2> erroroutput)

• “&>” redirects stdout and stderr (eg. ls foo &> /dev/null)

• “>> filename 2>&1” merges stdout and stderr and appends to filename

Example of stderr/out
[albook:~/tst] %% cc -o errout errout.c

[albook:~/tst] %% errout

a1

b2

[albook:~/tst] %% errout > what.out

b2

[albook:~/tst] %% cat what.out

a1

[albook:~/tst] %% errout 1> out.out 2> err.out

[albook:~/tst] %% cat out.out

a1

[albook:~/tst] %% cat err.out

b2

[albook:~/tst] %% errout > all.out 2>&1

[albook:~/tst] %% cat all.out

b2

a1

[albook:~/tst] %% errout &> all.out

[albook:~/tst] %% cat all.out

b2

a1

[albook:~/tst] %% cat errout.c

#include <stdlib.h>

#include <stdio.h>

int main()

{

fprintf(stdout,"a1\n");

fprintf(stderr,"b2\n");

return 0;

}

[albook:~/tst] %% cat erroutf.f

program errout

write(6,*) "a1"

write(0,*) "b2"

end program

Note: this only works this way in sh/bash

Wildcards for Filename Abbreviation

• When you type in a command line the shell treats
some characters as special (metacharacters)

• These special characters make it easy to specify
filenames

• The shell processes what you give it, using the
special characters to replace your command line
with new strings

The special character *

• “*” matches anything.

• If you give the shell “*” by itself (as a command line argument), the
shell will remove the * and replace it with all the filenames in the
current directory.

• “a*b” matches all files in the current directory that start with a and
end with b.

• This looks like regular expressions but isn’t quite the same.

Understanding *

• The echo command prints out whatever you tell it:

> echo hi

hi

> ls

dir1 foo foo2

• What will the following command do?

> echo *

dir1 foo foo2

Understanding ?

• The ? matches one single character:

> ls

dir1 foo1 foo2

• What will the following command do?

> ls foo?

foo1 foo2

Job Control

• The shell allows you to manage jobs
• place jobs in the background
• move a job to the foreground
• suspend a job
• kill a job

• If you follow a command line with “&”, the shell will run the job in the
background
• this is you useful if you don’t want to wait for the job to complete
• you can type in a new command right away
• you can have a bunch of jobs running at once

> cat foo | sort | uniq > saved_sort &

Background jobs

• Handy for programs you need throughout a session: emacs &

• For commands that take a lot of time:
make all &> make.out &

• If the job will run longer than your session:
nohup make all &> make.out &

Listing Your Jobs

• The command jobs will list all background jobs:

> jobs

[1] Running cat foo | sort | uniq > saved_ls &

• The shell assigns a number to each job (in this case, the job number is
1)

Managing Jobs

• You can kill the foreground job by pressing ^C
(Ctrl-C).

• You can also kill a job in the background using the
kill command (and the job index)

> kill %1

Note: it’s important to include the “%”

sign to reference a job number.

Moving Jobs between fore/background

• Turn a foreground process into background:
• Use ^-Z to suspend the command
• Use the bg command to send the job to the background

> sleep 60
Suspended
> jobs
[1] + Suspended sleep 60
> bg
[1] sleep 60 &
> jobs
[1] Running sleep 60

• The fg command will move a job to the foreground.
• You give fg a job number (as reported by the jobs command)

> jobs

[1] Stopped ls -lR > saved_ls &

> fg %1

ls -lR > saved_ls

Unix Environment Variables

• Unix shells maintain a list of environment variables which have a unique name
and a value associated with them
• some of these parameters determine the behavior of the shell

• also determine which programs get run when commands are entered (and which libraries
they link against)

• provide information about the execution environment to programs

• We can access these variables:
• set new values to customize the shell

• find out the value of some to help accomplish a task

Environment Variables
• To view environment variables, use the env (or printenv)command

• If you know what you are looking for, you can use your new friend
grep:

> env | grep PWD
PWD=/home/karl

• Use the echo command to print variables; the “$” prefix is required to
access the value of the variable:

> echo $PWD
/tmp

• Can also use environment variables in arbitrary commands:
Koomie@canyon--> ls $PWD
foo1 foo2

Special Environment Variable: PATH

• Each time you provide the shell a command to execute, it does the following:
• Checks to see if the command is a built-in shell command

• If it is not a build-in command, the shell tries to find a program whose name matches the
desired command

• How does the shell know where to look on the filesystem?

• The PATH variable tells the shell where to search for programs (non built-in
commands)

Special Environment Variable: PATH
• Example PATH Definition:

-> echo $PATH
/home/karl/bin/krb5:/opt/intel/compiler70/ia32/bi
n:/home/karl/bin:/usr/local/apps/mpich/icc/bin:/u
sr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr
/X11R6/bin

• The PATH is a list of directories delimited by colons (":“)
• It defines a list and search order
• Directories specified earlier in the PATH take precedent; once the

matching command is found, the search terminates

• You can add more search directories to your PATH by
changing the shell startup files
• BASH: export PATH="$PATH:/home/karl/bin"

Other Important Variables

PWD current working directory

MANPATH determines where to find man pages

HOME home directory of user

MAIL where your email is stored

TERM what kind of terminal you have

PRINTER specifies the default printer name

EDITOR used by many applications to identify your
choice of editors (eg. vi or emacs)

LD_LIBRARY_PATH specifies a search path for
dynamic runtime libraries

Setting Environment Variables

• The syntax for setting Unix environment variables depends on your shell:
• BASH: use the export command
> export PRINTER=scully
> echo $PRINTER
scully

• TCSH: use the setenv command
> setenv PRINTER mulder
> echo $PRINTER
mulder

• Note: environment variables that you set interactively are only available in your current shell
• If you spawn a new shell (or login again), these settings will be lost
• To make permanent changes, you should alter the login scripts that affect your particular shell (eg.

.login, .bashrc, .cshrc, etc...)

Text Editors

Text Editors

• For programming and changing of various text files, we need to make use of
available Unix text editors

• The two most popular and available editors are vi and emacs

• You should familiarize yourself with at least one of the two (and this let’s you
enter into the editor wars which is a never-ending debate in the programming
community)

http://en.wikipedia.org/wiki/Editor_war

• We will have very short introductions to each....

Brief history of Unix text editors

• ed : line mode editor

• ex : extended version of ed

• vi : full screen version of ex

• vim - Vi IMproved

• emacs : another popular editor, deep GNU,FSF roots

• ed/ex/vi share lots of syntax, which also comes back in sed/awk:
useful to know.

Vi Overview

• Fundamental thing to remember about vi is that it has two different modes of operation:

• Insert Mode
• Command mode

• The insert mode puts anything typed on the keyboard into the current file

• The command mode allows the entry of commands to manipulate text. These commands are
usually one or two characters long, and can be entered with few keystrokes

• Note that vi starts out in the command mode by default

Vi Overview

• Quick Start Commands
• > vi

• Press i to enable insert mode

• Type text (use arrow keys to move around)

• Press Esc to enable command mode

• Press :w <filename> to save the file

• Press :q to exit vi

Useful vi commands

• :q! – exit without saving the document. Very handy for beginners

• :wq – save and exit

• / <string> – search within the document for text. n goes to next result

• dd – delete the current line

• yy – copy the current line

• p – paste the last cut/deleted line

• :1 – goto first line in the file

• :$ - goto last line in the file

• $ – end of current line, ^ – beginning of line

• % – show matching brace, bracket, parentheses

Additional vi References
• http://staff.washington.edu/rells/R110/

• Vi Commands Reference card:
http://tnerual.eriogerg.free.fr/vimqrc.pdf

• vimtutor – the Vim tutor

• http://vim-adventures.com/

http://staff.washington.edu/rells/R110/
http://tnerual.eriogerg.free.fr/vimqrc.pdf

Emacs Overview

• Programmer friendly modes for common languages (C/C++, Fortran, shell scripts,
etc)

• Different from vi in that emacs has only one-main mode

• Lots of commands and extremely customizable (using LISP)

• Includes some very sophisticated features if you take the time to learn them:
• Compile your executables within emacs
• Interact with your revision control process (eg. CVS/subversion)
• Control RPM software builds
• Debug your application using gdb

Emacs Overview

• > emacs myfile opens myfile for editing

• Type whatever text you like (use arrow keys to navigate)

• C-x C-s (control + x, control + s) – saves the file

• C-g exits the current command

• C-x u - Undo

• C-x C-c exit after saving

Additional Emacs References

• http://www.lib.uchicago.edu/keith/tcl-course/emacs-tutorial.html

• http://www.stolaf.edu/people/humke/UNIX/emacs-tutorial.html

• Emacs includes its own on-line tutorial; to run issue the following:

• > emacs

• Then, enter “C-h t”, to invoke the on-line emacs tutorial (that’s a “Control-h”, followed by a
“t”)

http://www.lib.uchicago.edu/keith/tcl-course/emacs-tutorial.html
http://www.stolaf.edu/people/humke/UNIX/emacs-tutorial.html

Unix Scripting

• Scripting is “easy” - you just place all the Unix commands in a file as opposed to
typing them interactively

• Handy for automating certain tasks:
• staging your scientific applications

• performing limited post-processing operations

• any repetitive operations on files, etc...

• Shells provide basic control syntax for looping, if constructs, etc...

Unix Scripting
• Shell scripts must begin with a specific line to indicate which shell should be

used to execute the remaining commands in the file:
• BASH:

#!/bin/bash

• TCSH
#!/bin/tcsh

• Comment lines can be included if they start with #

• In order to run a shell-script, it must have execute permission. Consider the
following script:

> cat hello.sh
#!/bin/bash
echo “hello world”

> ./hello.sh
./hello.sh: Permission denied.

> chmod 700 hello.sh
> ./hello.sh
hello world

Unix Scripting: Arithmetic Operations

• Simple arithmetic syntax depends on the shell:

i1=2

j1=6

k1=$(($i1*$j1))

echo "The multiplication of $i1 and $j1 is $k1”

• Note, you can also use the expr command (for both shells). For example:
• z=`expr $i1 + $j1`

• For floating point use bc

$ echo "scale=4; 2 / 3" | bc -l

.6666

consult man page on expr

and bc for more details

Unix Scripting: Conditionals
• Syntax for conditional expressions depends on your choice of shell:

• BASH (general format):

if [condition_A]; then
code to run if condition_A true

elif [condition_B]; then
code to run if condition_A false and

condition_B true
else

code to run if both conditions false
fi

Unix Scripting: String Comparisons

• string1 = string2 Test identity

• string1 !=string2 Test inequality

• -n string the length of string is nonzero

• -z string the length of string is zero

BASH Example:
today="monday"

if ["$today" = "monday"] ; then

echo "today is monday"

fi

BASH Integer Comparisons

• int1 –eq int2 Test identity

• int1 –ne int2 Test inequality

• int1 –lt int2 Less than

• int1 –gt int2 Greater than

• int1 –le int2 Less than or equal

• int1 –ge int2 Greater than or equal

BASH Example:
x=13

y=25

if [$x -lt $y]; then

echo “$x is less than $y"

fi

Unix Scripting: Common File Tests
• -d file Test if file is a directory

• -f file Test if file is not a directory

• -s file Test if the file has non zero length

• -r file Test if the file is readable

• -w file Test if the file is writable

• -x file Test if the file is executable

• -o file Test if the file is owned by the user

• -e file Test if the file exists

BASH Example:
if [-f foo]; then

echo "foo is a file"

fi

Unix Scripting: For loops

• These are useful when you want to run the same command in sequence with
different options

• sh example:
for VAR in test1 test5 test7b finaltest; do

runmycode $VAR > $VAR.out

Done

• sh one-liner

for i in `seq 1 5`; do echo $i; done

1

2

3

4

5

Quoting in Unix
• We've seen that some metacharacters are treated special

on the command line: * ?

• What if we don't want the shell to treat these as special -
we really mean *, not all the files in the current directory

• To turn off special meaning - surround a string with double
quotes:

> echo here is a star "*"
here is a star *

Use of Quotes

• You have to be careful with the use of different styles of quotes in your
commands or scripts

• They have different functions:

• Double quotes inhibit wildcard replacement only

• Single quotes inhibit wildcard replacement, variable substitution and
command substitution

• Back quotes cause command substitution

Double Quotes

• Double quotes around a string turn the string in to a single
command line parameter:

> ls

fee file? foo

> ls "foo fee file?"

ls: foo fee file?: No such file or

directory

• Double quotes only inhibit wildcards; use \ to escape
special characters:

> echo “This is a quote \" “

This is a quote “

Single Quotes

• Single quotes are similar to double quotes, but they also inhibit
variable substitution and command substitution

• Means that special characters do not have to be escaped:

> echo 'This is a quote \" '

This is a quote \"

Back Quotes

• If you surround a string with back quotes, the string is replaced with the result of
running the command in back quotes:

> echo `ls`

foo fee file?

> echo "It is now `date` and OU is still questionable”

It is now Tue Sep 19 11:24:25 CDT 2006 and OU is still

questionable

More Quote Examples

• Some Quoting Examples:

$ echo Today is date

Today is date

$ echo Today is `date`

Today is Thu Sep 19 12:28:55 EST 2002

$ echo ”Today is `date`”

Today is Thu Sep 19 12:28:55 EST 2002

$ echo ‘Today is `date`’

Today is `date` “ “ = double quotes

‘ ‘ = single quotes

` ` = back quotes

Command-Line Parsing

• To build generic shell scripts, consider using command-line arguments to provide the inputs
you need internally (syntax again depends on the choice of shell)

• Syntax:
• $# refers to the number of command-line arguments

• $0 refers to the name of the calling command

• $1, $2, ..., $N refers to the Nth argument

• $* refers to all command-line parameters

echo "Calling command is: $0"

echo "Total # of arguments is: $#"

echo "A list of all arguments is: $*"

echo "The 2nd argument is: $2"

> ./foo.sh texas rose bowl

Calling command is: ./foo.sh

Total # of arguments is: 3

A list of all arguments is: texas rose bowl

The 2nd argument is: rose

More UNIX Commands for Programmers

• man –k Search man pages by topic
• time How long your program took to run
• date print out current date/time
• test Compare values, existence of files, etc
• tee Replicate output to one or more files
• diff Report differences between two files
• sdiff Report differences side-by-side
• wc Show number of lines, words in a file
• sort Sort a file line by line
• gzip Compress a file
• gunzip Uncompress it
• strings Print out ASCII strings from a (binary)
• ldd Show shared libraries program is linked to
• nm Show detailed info about a binary obj
• tar Archiving utility
• uniq Remove duplicate lines from a sorted file
• which Show full path to a command
• file Determine file type

Text editors – another subculture

